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INTRODUCTION RESULTS
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METHODS Fig. 10: Word importance estimation using LIME method for
incident duration groups

There is a large variety of methods developed in recent years and used in the research (see Fig. Results):

a) Various Machine Learning models allow to classify accidents using duration threshold between short-term and long-term or
predict their duration based on the data available at the moment the accident reported [1]. SOCIAL IMPACT

b) Feature importance estimation algorithms allow to determine the impact of each reported accident characteristic on the incident

. i Traffic authorities can integrate the accident duration prediction models into decision-making system, estimate its potential
duration prediction accuracy.

accuracy and to understand how the collected data (features and textual descriptions) can improve their predictions.

c) The impact of traffic accidents on traffic flow studied and analysed using modern modelling techniques, which allow to detect
the disruptions in traffic flow more selectively and precisely to segment and markup accidents for the modelling and analysis of
their impact. By having the road network graph, marked up accidents and their impact, it is possible to perform the spatial-
temporal traffic accident impact prediction [2].

Traffic network end-users could have a route planning recommendation system which considers how traffic accidents appearing
in real-time could affect speeds on various streets throughout their tour, which will allow them to plan a route the least affected by
accidents both now and across the future accident effect propagation.

d) Each accident has a textual description, which very rarely been analysed before with the focus on accident impact and duration

prediction [3]. Textual accident descriptions are analysed for words which have the highest impact (associated with shorter or
longer accident) on the prediction accuracy. FUTURE RESEARCH

Traffic accidents can have an impact throughout the whole traffic network. And the accident impact can propagate differently
through various road structures (dissipate or even cause secondary accidents).
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accident-resilient traffic networks, which will allow us to build better cities.

UTS CRICOS PROVIDER CODE: 00099F



	Slide Number 1

