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Background

What do we know about traffic accidents?

• Statistics: The annual economic cost of road crashes in Australia was estimated at $27 
billion in 2017 [1]. There were 39,505 hospitalized injuries in Australia in 2021 [2] and 
1,194 fatalities in 2022 [3].

• Impact: Traffic accidents pose significant challenges to modern transportation systems, 
affecting traffic flow and public safety.

• Prediction: Accurate modelling of traffic accidents is crucial for intelligent transportation 
systems, for reducing traffic congestion and economic cost associated with accidents.

• Large Language Models (LLMs): recent developments in the field of large language 
models holds considerable promise for addressing the complexities associated with 
processing unstructured datasets [3] and potential for enhancing the efficiency of 
accident modelling.

[1] https://infrastructure.gov.au/roads/safety/, 
[2] https://www.officeofroadsafety.gov.au/data-hub/serious-injuries-data
[3] https://www.bitre.gov.au/statistics/safety/fatal_road_crash_database
[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. & Polosukhin, I. 
(2017). Attention is all you need. Advances in neural information processing systems, 30.

https://www.officeofroadsafety.gov.au/data-hub/serious-injuries-data


Traditional vs LLM-based models

Limitations of Traditional Models:

- Strict Accident Report Format: Models built on structured/tabular data 
often can't transfer between systems due to using different accident report 
formats.
- Limited Linguistic Understanding: These models often struggle to capture 
the nuanced linguistic features present in textual accident reports

Potential of Large Language Models:

- Flexible Unstructured Accident Report representation: Traffic incident 
reports and other related text data represent a rich source of information 
that is often underutilized in traditional predictive models. LLM hold the 
capability to process this kind of data.
- Cross-Dataset Transferability: Potential capability for a development of 
universally applicable LLM models (transferable across different datasets 
and reporting formats).

- Multi-modality or recent LLMs (2023): LLM obtain the ability to process 
image and video data, that may be collected from the crash site.



Existing research: incident severity 
/duration classification

Oliaee, A. H., Das, S., Liu, J., & Rahman, M. A. (2023). 
Using Bidirectional Encoder Representations from 
Transformers (BERT) to classify traffic crash severity types. 
Natural Language Processing Journal, 3, 100007.

Agrawal, P., Franklin, A., Pawar, D., & Srijith, P. K. (2021, 
September). 
Traffic Incident Duration Prediction using BERT 
Representation of Text. 
In 2021 IEEE 94th Vehicular Technology Conference. IEEE.

Yuan, S., & Wang, Q. (2022, February). 
Imbalanced traffic accident text classification based 
on Bert-RCNN. 
In Journal of Physics: Conference Series (Vol. 2170, No. 
1, p. 012003). IOP Publishing.
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LLMs for accident report 
embedding



Novel Approach: LLMs as a substitute for 
data preparation



LLM-based data processing 
pipeline



Datasets

1. USA Countrywise Traffic Accident Dataset – subset of 
25,000 cases:

This dataset includes detailed information on U.S. traffic 
accidents, focusing on environmental and lighting conditions.

2. UK Road Safety Data (2018-2021) – subset of 20,000 cases:
This dataset covers UK traffic accidents, with a focus on 
infrastructure details like pedestrian crossings and local 
authority data. 

3. Queensland Road Crash Data – subset of 25,000 cases: 
This comprehensive dataset from Queensland includes detailed 
geographical information, useful for localized analysis.

All the datasets have been evenly sampled for balanced 
analysis of each severity class.

Example of even class sampling for the Queensland data set



Examples of full text representation



LLM models



USA: Performance of LLM models

!



Queensland: Performance of LLM models



Findings

We tested 8 large language models (BERT, XLNet, RoBERTa, etc.) combined with 
4 different ML models (XGBoost, KNN, etc) across 3 diverse accident data sets 
from USA, UK, and Australia.

1. Language models can provide performance comparable to traditional 
machine learning pipeline with manual feature engineering step excluded 
completely.

2. LLM promise universally applicable accident analysis solutions, 
unconstrained to reporting format (which can vary across 
countries/cities).



Multi-modal LLMs
for accident analysis



Multimodal Large Language Models 
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Zhang, D., Yu, Y., Dong, J., Li, C., Su, D., Chu, C., & Yu, D. (2024). MM-LLMs: Recent Advances in Multimodal Large Language Models. 

Multimodal Large Language Models (MLLMs) 
are advanced Generative AI systems designed 
to process and integrate information from 
multiple types of data, or "modalities," such as 
text, images, audio, and video.



Multi-modal LLMs for crash site analysis

https://en.wikipedia.org/wiki/Traffic_collision

Provide a list of 
vehicle types 

involved

Silver Honda Stream - A compact MPV (Multi-Purpose Vehicle).
Beige Nissan Sunny - A compact sedan.

Describe the 
location and 

road condition

The location is an urban intersection, likely in Japan, as indicated by 
the Japanese road markings and license plates. The road surface is 

asphalt, dry, and well-maintained with clear zebra stripes for a 
pedestrian crossing and a visible bicycle lane marking. The road 

conditions are good, with no visible debris or hazards.

ChatGPT-4o output
ChatGPT-4o input image

Prompt

Describe lighting 
conditions

The lighting conditions appear to be natural daylight, likely on a 
cloudy or overcast day. The light is soft and diffused, with no harsh 

shadows, suggesting the sun is obscured by clouds. This provides even 
illumination across the scene without strong directional light.

Can be automated



WIP: TrafficIncidentResponseGPT

TrafficIncidentResponseGPT, an innovative platform 
that uses Generative AI to generate incident response 
plans by utilizing specific traffic incident response 
guidelines based on incident description.

- Visualized Chain-of-Thought Process: The platform 
offers transparency by visually presenting the AI's 
thought process, enabling users to understand how 
conclusions are drawn.

- Empirical Evaluation: The produced response plans 
are expected to have a formal structure to facilitate 
validation using decision-making algorithms (currently 
using TOPSIS) or traffic simulation software.

https://arxiv.org/abs/2404.18550



Integration: 1-click Accident Identification &
Severity classification

https://en.wikipedia.org/wiki/Traffic_collision

MM-LLM
pipeline

ChatGPT-4o input image

Pre-filled report form

Automated using API

Severity/Duration 
classification

model

Automated using API



TrafficIncidentResponseGPT.
Results of guideline synthesis



Comparison of model performance for 
incident response plan generation
(action weights estimated using TOPSIS, comparison of binary action 
vectors performed Euclidean distance estimation)
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Our goal: 
1-click Accident Identification & Modelling & Resolution

MM-LLM
pipeline

ChatGPT-4o input image

Automated using API

Incident 
report

Incident 
response plan

Severity/Duration 
classification

model

TrafficIncidentResponseGPT
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Thank You!
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